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Abstract

This study contributes a detailed assessment of how increasing problem sizes (measured in terms of the number of decision variables
being considered) impacts the computational complexity of using multiple objective evolutionary algorithms (MOEAs) to solve long-term
groundwater monitoring (LTM) applications. The epsilon-dominance non-dominated sorted genetic algorithm II (e-NSGAII), which has
been shown to be an efficient and reliable MOEA, was chosen for the computational scaling study. Four design objectives were chosen for
the analysis: (i) sampling cost, (ii) contaminant concentration estimation error, (iii) local uncertainty, and (iv) contaminant mass estima-
tion error. The true Pareto-optimal solution set was generated for 18–25 well LTM test cases in order to provide for rigorous algorithm
performance assessment for problems of increasing size. Results of the study indicate that the e-NSGAII exhibits quadratic computational
scaling with increasing LTM problem size. However, if the user is willing to accept an approximation to the Pareto-optimal solution set,
e-dominance can be used to reduce the computational scaling of MOEAs to be linear with increasing problem sizes. This study provides a
basis for advancing the size and scope of water resources problems that can be effectively solved using MOEAs.
� 2006 Published by Elsevier Ltd.
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1. Introduction

This study contributes a detailed assessment of how
increasing problem sizes impacts the computational com-
plexity of using multiple objective evolutionary algorithms
(MOEAs) in long-term groundwater monitoring (LTM)
applications. Problem size in this study is measured in
terms of the number of design decision variables being con-
sidered. Computational complexity (or scaling) can be
defined as a measure of how problem sizes impact the
growth rate of the average number of design evaluations
required by an MOEA to approximate a solution to an
application. Building on a recent comparative analyses of

MOEA effectiveness [1–3], this study characterizes the
computational complexity of the epsilon-dominance non-
dominated sorted genetic algorithm II (e-NSGAII) [1,2]
developed by the authors. This algorithm has been proven
to be more efficient and reliable relative to other state-of-
the-art MOEAs [1,2] in the LTM application area. This
study’s computational scaling analysis is based on a suite
of LTM test cases formulated to test a range of problem
sizes. Formally, LTM design can be defined as the assess-
ment of groundwater quality over long time-scales to
provide ‘‘sufficient and appropriate information’’ to assess
and possibly modify mitigation or contaminant control
measures to ensure that they are adequately protective of
human and ecological health [4].

In general, groundwater monitoring design has been
shown to be a challenging optimization problem with mul-
tiple conflicting objectives and very large discrete decision
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spaces [4–13]. Lettenmaier [14] referred to the scaling chal-
lenges posed by the LTM network design problem as being
a ‘‘curse of dimensionality’’. Knopman and Voss [5,15] rec-
ognized that the groundwater quality network design prob-
lem has many mathematical similarities to the classical
combinatorial knapsack problem (i.e., discrete decision
spaces that grow exponentially with increasing problem
size). Reed and Minsker [13] used the LTM problem to
illustrate that MOEAs are capable of solving a new prob-
lem class [16,17] that they termed high-order Pareto opti-
mization (i.e., problems with three or more design
objectives). In general, the goal of multiobjective optimiza-
tion is to identify the Pareto-optimal tradeoffs between an
application’s objectives. These tradeoffs are composed of
the set of solutions that are better than all other solutions
in at least one objective and are termed non-dominated or
Pareto-optimal solutions [18]. The Pareto-optimal front is
obtained by plotting these solutions according to their
objective values yielding an M � 1 dimensional surface
where M is the total number of design objectives. MOEAs’
can solve highly nonlinear, discrete, and non-convex prob-
lems without differentiation [19–21] and their population-
based search enables them to evolve entire tradeoff (or
Pareto) surfaces within a single optimization run for prob-
lems with huge decision spaces.

There has been a modern confluence of systems analysis
research towards approaches that emphasize multiple
objectives (see reviews [22–25]). This trend is clearly evident
in the water resources literature over the past decade
[3,9,12,13,26–30]. Recent MOEA applications demonstrate
that a growing body of researchers in both the water
resources and broader systems analysis communities are
seeking to use MOEAs in high-order Pareto optimization
[13,16,17,25,31–33]. Moreover, many recent multiobjective
optimization applications within the water resources litera-
ture are seeking to solve applications with large numbers of
continuous, integer, and binary decisions [34–38]. For
example, recent MOEA applications in hydrologic model
calibration [39], non-point source pollution management
[34], groundwater management [36], and distribution sys-
tems [35] consider complex integer, continuous, or mixed
decisions. It should be noted that a key strength of MOEAs
is their ability to rapidly approximate the true Pareto sur-
face even if it is not exactly quantified, which can be suffi-
cient given computational constraints.

The LTM problem provides an excellent means of
assessing MOEA computational scaling due to the prob-
lem’s large array of potential design objectives and the dis-
crete 0/1 decision variable formulation. The 0/1 decision
variable formulation used in this study represents yes/no
decisions on whether to sample from a predetermined mon-
itoring well location. The 0/1 programming formulation
allows for enumerative analyses of modestly sized LTM
applications. In this study, enumerations were developed
for various problem sizes with an upper bound representa-
tive of what could be practically enumerated given compu-
tational constraints. In the broader context of multiple

objective water resources applications, the 0/1 decision var-
iable formulations considered in this study provide a lower
bound estimate of the computational complexities for using
MOEAs in water resources applications with more com-
plex decisions (e.g., mixed integer formulations). The pur-
pose of this study is to provide guidance on the current
computational complexity of MOEAs to clarify future
research paths that will allow them to solve larger water
resources applications efficiently and reliably.

The MOEA computational scaling analysis presented in
this paper proceeds as follows. Section 2 presents the LTM
test cases and design objectives. The e-NSGAII is then
introduced in Section 3. The methodology used to develop
the various sized LTM test cases used to demonstrate the
computational scaling characteristics of the e-NSGAII is
presented in Section 4. Section 5 provides a detailed
description of the computational experiment as well as
the parametrization of the e-NSGAII. Section 6 provides
detailed illustrations of the scaling characteristics of the
LTM problem and the ability of the e-NSGAII to approx-
imate the Pareto-optimal solution set. The e-dominance
concept is also demonstrated in this section as a means of
approximating the Pareto-optimal solution set, ultimately
reducing computational requirements. Section 7 provides
a discussion regarding the algorithm’s computational scal-
ing and the implications of this study for future water
resources research. Conclusions of the study are presented
in Section 8.

2. Methodology

2.1. Test case development

The LTM test case used in this study is based on a 50-
million node flow and transport simulation originally
developed by Maxwell et al. [40]. This test case represents
the migration of a hypothetical perchloroethylene (PCE)
plume originating from an underground storage tank.
The hydrogeology of the site has been extensively charac-
terized and is based on a highly heterogeneous alluvial
aquifer located at the Lawrence Livermore National Labo-
ratory in Livermore, California. Concentration data are
provided at 58 hypothetical sampling locations in a 29 well
monitoring network for a snapshot in time 8 years follow-
ing the initial release of contaminant. Each well has one to
three predetermined sampling locations available along its
vertical axis and the sampling domain extends 650 m in the
x-direction, 168 m in the y-direction, and 38.4 m in the
z-direction with a minimum horizontal spacing of 10 m
between wells. Additional details on this test case can be
found in Reed et al. [41].

2.2. Objective formulation

Four design objectives were chosen for this study, each
of which were minimized: (i) sampling cost, (ii) relative
error of local contaminant concentration estimates, (iii)
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local contaminant concentration estimation uncertainty,
and (iv) contaminant mass estimation error. Objectives
(ii)–(iv) were obtained using the Quantile Kriging method
described in Section 2.3. Eq. (1) represents the objective
formulation where F(xj) is a vector valued performance
function in which the four objectives: cost (fcost), concen-
tration estimation error (fconc), local uncertainty (funcert),
and mass estimation error (fmass) are minimized.

Minimize FðxjÞ ¼ ðfcostðxjÞ; fconcðxjÞ; funcertðxjÞ; fmassðxjÞÞ;
8j 2 X ð1Þ

Subject to UðxjÞ ¼ 0 ð2Þ

The objectives are all a function of the vector xj represent-
ing the jth sampling plan in the decision space X. Each
component i of a sampling plan j is determined from Eq.
(3) resulting in a string of binary digits indicating whether
or not a well is sampled. Eq. (2) subjects F(xj) to the con-
straint that no points in the interpolation domain remain
unestimated. Quantile Kriging (described in Section 2.3)
was used to interpolate contamination estimates at unsam-
pled locations throughout the plume. Well sampling
schemes that contain too few wells or wells that are poorly
distributed in space may not have a sufficient number of
data points in the Kriging neighborhoods to perform inter-
polation and hence result in a number of unestimated
points, U(xj), in the interpolation domain (violating the
constraint described by Eq. (2)).

xj;i ¼
1; if the ith well is sampled

0; otherwise
8j; i

�
ð3Þ

The sampling cost objective quantifies the monitoring cost
of a particular sampling scheme using Eq. (4). The coeffi-
cient, CS defines the cost per sample (normalized to one
in this study). Additionally, if a well is sampled, it is as-
sumed that all locations along its vertical axis are sampled
resulting in a cost coefficient ranging from 1 to 3. The cost
objective is ultimately quantified by summing the cost coef-
ficients of each of the wells sampled in a particular scheme.

fcostðxjÞ ¼
Xnwell

i¼1

CSðiÞxj;i ð4Þ

The relative error of local contaminant concentration esti-
mates objective measures how the Kriged estimate of the
plume using the jth sampling plan differs from that
obtained by sampling from all well locations. Eq. (5) quan-
tifies the concentration error objective by summing the
squared differences between the concentration estimate at
a grid location uj using all wells, call(uj), and the concentra-
tion estimate at the same grid location using the jth sam-
pling plan, cj(uj).

fconcðxjÞ ¼
Xnest

j¼1

ðcallðujÞ � cjðujÞÞ2 ð5Þ

Local contaminant concentration estimation uncertainty is
quantified by summing the estimation standard deviations

obtained from Kriging at each grid location uj using Eq.
(6). The standard error weight coefficient, Aj, can be used
to assign importance to uncertainty estimates at different
locations in the interpolation domain. For this study, Aj

was assumed constant across the interpolation domain
and was assigned a value of 2

ffiffiffi
3
p

based on the standard
deviation of a uniform distribution.

funcertðxjÞ ¼
Xnest

j¼1

AjrðujÞ ð6Þ

The contaminant mass estimation error objective quantifies
the relative error between the total mass of dissolved con-
taminant estimated using all well locations, Massall, and
the contaminant mass estimated from the jth sampling
plan, Massj. Eq. (7) expresses the relative mass estimation
error in terms of a percentage.

fmassðxjÞ ¼
Massall � Massj

Massall

����
���� � 100% ð7Þ

If a well sampling scheme results in unestimated points in
the interpolation domain (violating the constraint de-
scribed by Eq. (2)), the objectives are penalized to ensure
that infeasible sampling schemes are eliminated from con-
sideration. Eq. (8) is applied to each objective function if
a feasibility violation occurs, resulting in solutions with
lower fitness (i.e., higher objective values in a minimization
problem).

FpenaltyðxjÞ ¼

f penalty
cost ¼ fcost þ f max

cost

f penalty
conc ¼ fconc þ nest þ UðxjÞ þ f max

cost

f penalty
uncert ¼ funcert þ nest þ UðxjÞ þ f max

cost

f penalty
mass ¼ fmass þ nest þ UðxjÞ þ f max

cost

8>>>><
>>>>:

ð8Þ

Eq. (8) penalizes the objective functions based on the max-
imum cost of a sampling scheme, f max

cost (which is dependent
on the test case size), the total number of estimation points
in the grid, nest (in this case 1666 – chosen based on compu-
tational feasibility), and the total number of unestimated
points, U(xj), in the infeasible sampling plan. For example,
if a particular sampling plan for the 25 well test case re-
sulted in 10 unestimated points in the interpolation grid,
the fitness penalty added to the design’s cost objective
would be 47, and the fitness penalty added to the values
for the concentration error, uncertainty, and mass error
objectives would be 1723. Since the maximum cost of the
system was known based on the test case data, Eq. (8) is
defined so that all infeasible solutions will have costs that
exceed the maximum feasible cost (i.e., for this test case,
47). The exact ranges of the other objectives were not
known a priori, so 1723 is a conservative penalty for the
uncertainty, mass error, and concentration error objectives
that ensures that when penalized, their fitness values will
exceed their maximum feasible values. Penalizing solutions
rather than eliminating them ensures that sampling
schemes which are ‘‘almost’’ feasible are given the opportu-
nity to be further evolved by the MOEA into feasible
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designs (for more details on this problem formulation, see
Reed and Minsker [13]).

2.3. Spatial interpolation

Spatial interpolation of the contamination plume was
conducted using Quantile Kriging (QK) based on the rec-
ommendations of Reed et al. [41]. Kriging provides a min-
imum error variance estimate value at an unsampled
location provided the data at the sampled locations [42].
QK extends Ordinary Kriging (OK) by transforming the
sample values to quantile space according to their rank.
The quantile values represent the empirical cumulative dis-
tribution function (CDF) of the sample values, resulting in
normalized data. Samples are Kriged in quantile space and
then transformed back to concentration space using the
generated CDF [43,44]. Since OK assumes stationarity of
the concentration mean, moving local neighborhoods are
used to estimate the expected value at each location [42].
Reed et al. [41] found that QK showed the least bias with
respect to variability of PCE concentrations and preferen-
tial sampling, and was most robust in representing the
plume when compared to five other interpolation methods.

For this study, the contamination plume was interpo-
lated using a C translation of KT3D, a 3-dimensional Kri-
ging library written in Fortran as part of the GSLIB
software package [42]. For the 29 well test case, a geostatis-
tical analysis revealed a spherical variogram structure with
0.005 nugget and 18 m range. The interpolation grid was
defined by 34 blocks in the x, 7 blocks in the y, and 7 blocks
in the z directions, resulting in 1666 regularly spaced esti-
mation points. The search neighborhood size was based
on an ellipsoid structure with axes lengths equal to half
of each the x, y, and z extents of the study region. The
search neighborhood was divided into octants, and a max-
imum of one data point from each octant was used in the
estimation, ensuring that clustered data points did not bias
interpolation estimates. Smaller test cases which were gen-
erated to demonstrate the computational scaling character-
istics of the LTM problem utilized the same geostatistical
parametrization of the 29 well test case because of its
higher information content. Reed et al. [41] provides a
more detailed description of Quantile Kriging for inter-
ested readers.

3. Optimization algorithm

The e-NSGAII was chosen for this study based on its
superior performance relative to the original non-domi-
nated sorted genetic algorithm II (NSGAII) and the epsi-
lon-dominance multi-objective evolutionary algorithm
(eMOEA), and its competitive to superior performance rel-
ative to the strength Pareto evolutionary algorithm 2
(SPEA2) on the LTM problem formulated in Section 2
[1]. All of these MOEAs use real parameter simulated bin-
ary cross-over (SBX) [45], polynomial mutation [32], and
elitism [32]. Since all of the algorithms use the same pri-
mary search operators, it is expected that their perfor-
mance will scale similarly to the e-NSGAII on this
application.

The e-NSGAII builds on its parent algorithm, the
NSGAII [46], by adding e-dominance archiving [47,31],
adaptive population sizing [48], and automatic termination
to minimize the need for extensive parameter calibration as
demonstrated by Reed et al. [12]. The concept of e-domi-
nance allows the user to specify the precision with which
they want to quantify each objective in a multi-objective
problem. Fig. 1 demonstrates the concept of e-dominance
using a three step approach for a two-objective minimiza-
tion problem. First, a user specified e grid is applied to
the search space of the problem. Larger e values result in
a courser grid (and ultimately fewer solutions) while smal-
ler e values produce a finer grid. Grid blocks containing
multiple solutions are then examined and only the solution
closest to the bottom left corner of the block is kept
(assuming minimization of all objectives). In the second
step, non-domination sorting based on the grid blocks is
then conducted resulting in a ‘‘thinning’’ of solutions (step
3) and promoting a more even search of the objective
space. Epsilon-dominance allows the user to define objec-
tive precision requirements that make sense for their partic-
ular application. The interested reader can refer to prior
work by Laumanns et al. [47] and Deb et al. [31] for a more
detailed description of e-dominance.

The e-NSGAII uses a series of ‘‘connected runs’’ where
small populations are initially exploited to pre-condition
search and automatically adapt population size commensu-
rate with problem difficulty. As the search progresses, the
population size is automatically adapted based on the

Fig. 1. Illustration of the e-dominance concept.
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number of e-non-dominated solutions that the algorithm
has found. Epsilon-non-dominated solutions found after
each generation are stored in an archive and subsequently
used to direct the search. Theoretically, this approach allows
the MOEA’s population size to increase or decrease, and in
the limit when the e-dominance archive size stabilizes, the e-
NSGAII’s ‘‘connected runs’’ are equivalent to a diversity-
based EA search enhancement recommended by Goldberg
[49] termed ‘‘time continuation’’. The search is terminated
across all runs (i.e., across all populations used) if the num-
ber and quality of solutions has not increased above a user
specified D-percent across two successive runs.

The primary goal in the development of the e-NSGAII
was to provide a highly reliable and efficient MOEA which
minimizes the need for traditional EA parametrization and
allows the user to focus on problem specific search quality
goals. Computational savings can be viewed in two con-
texts: (i) the use of minimal population sizes and (ii) the
elimination of trial-and-error application runs to determine
search parameters. Although the adaptation of population
size will differ depending on the random seed chosen,
exploiting small populations to precondition search will
on average greatly reduce computation times. Readers
interested in a more detailed description of the e-NSGAII
can refer to the study by Kollat and Reed [1].

4. Test cases used in scaling analysis

For the computational scaling analysis, test cases of
varying size were derived from the full 29 well test case
(described in Section 2.1) to demonstrate the effects of
increasing problem sizes (defined as the number of sam-
pling wells) on the computational demands of using the
e-NSGAII to approximate the four-objective Pareto sur-
face. To accomplish this, the least important wells were
eliminated from the full 29 well test case based on previous
results attained by Reed and Minsker [13] in order to
develop a set of smaller test cases which could be enumer-
ated within a reasonable time frame. The relative impor-

tance of wells was defined in this case by the well
sampling frequency distribution associated with Reed and
Minsker’s best approximation to the true Pareto-front
obtained using the original NSGAII. Based on preliminary
enumeration analyses, it was then determined that a 25 well
test case represented the upper bound problem size which
could be enumerated in a reasonable time frame (approxi-
mately 6 days of continuous computing on a Pentium IV
3.0 GHz processor). The true four-objective Pareto-
optimal solution set was then generated for the 25 well test
case by evaluating all 225 (over 33.5-million) possible well
sampling schemes in terms of the four design objectives
defined previously in Section 2.2. For the enumeration,
infeasible solutions (violating the constraint described by
Eq. (2)) and inferior solutions (i.e., solutions dominated
in terms of at least one design objective) were eliminated
from consideration, resulting in the true Pareto-optimal
solution set. Smaller test cases were then generated by elim-
inating individual wells from the 25 well test case based on
the well sampling frequency distribution obtained from the
25 well enumeration. Test cases ranging from 18 to 25 wells
were then developed based on this methodology and each
test case was subsequently enumerated to obtain the true
four-objective Pareto-optimal solution set for each test
case. Knowing the Pareto-optimal set for each test case
allows for rigorous assessment of the computational scal-
ing of the e-NSGAII algorithm. A cross-sectional slice of
the simulated PCE contamination plume is shown in
Fig. 2 along with the 29 well sampling locations. The table
associated with the figure indicates which wells were elimi-
nated in order to create each of the 18–25 well test cases
explored in this study.

5. Computational experiment

The computational scaling characteristics of the
e-NSGAII are tested in this study using the true Pareto-
optimal solution sets for each of the 18–25 well test cases.
Following enumeration, the e-NSGAII was used to

Fig. 2. Cross-sectional slice of the PCE contamination plume representing the LTM test case used in this study. There are 29 well locations available for
sampling with one to three sampling locations available along each well’s vertical axes. Wells eliminated to create each of the 18–25 well test cases are
shown in the figure.
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approximate these tradeoffs and its evolutionary operators
were parameterized as follows: probability of cross-over –
pc = 1.0, probability of mutation – pm = 1/N where N is
the population size, cross-over distribution index – gc =
15, and the mutation distribution index – gm = 20. The
e-NSGAII’s adaptive population sizing was initialized
using 10 individuals. Epsilon resolution settings for the
four design objectives: ecost, econc, euncert, and emass were
set to 1.0, 0.0001, 0.0001, and 0.000001, respectively. These
values represent the precision with which each objective is
quantified and were chosen in this case to represent the full
precision Pareto-optimal set. Since MOEA search is initial-
ized with randomly generated populations and since evolu-
tionary operators are probabilistic, the process can yield
high variability in search efficiency and reliability. It is
standard practice to overcome this variability by running
EMO algorithms for a distribution of ‘‘seeds’’ for the ran-
dom number generator which is used to initialize and guide
their probabilistic search. In this study, our scaling analysis
across the eight different LTM test cases was characterized
using 50 random seed trial runs for each problem size (i.e.,
a total of 8 · 50 = 400 trial runs).

Since MOEAs are stochastic search methods, the
approach to the true Pareto-front of difficult problems usu-
ally occurs asymptotically in terms of the number of design
evaluations needed to perfectly capture the optimal set of
solutions. To ensure the computational tractability of this
study, 80% of the true Pareto-optimal set was approxi-
mated for each of the problem sizes. In order to accurately
quantify the percentage of Pareto-optimal solutions found,
the e-performance metric [2] was used to determine the per-
centage of algorithm solutions found within a user specified
e distance of the reference (i.e., Pareto-optimal) set, which
was generated by enumerating all possible well sampling
schemes. The first step in the calculation of the metric is
to apply the e-dominance concept to the reference set
according to user specified precision values (see Fig. 1).
The proportion of solutions found within e hypercubes of
the e-dominated reference set is then measured by match-
ing solutions from the algorithm set to the reference set.
Reference set solutions with a matching algorithm solution
receive an indicator score while those with no matching
solution receive no score (see Fig. 3 for an example calcu-
lation of the metric). Reference solutions with multiple
matching approximation solutions use the solution which
is closest in terms of Euclidean distance, allowing the addi-
tional solutions to be matched with other reference solu-
tions which may have overlapping e hypercubes. The
values of this metric range from zero to one, where a metric
value of one indicates 100% convergence to within e of the
reference set.

For this study, the e-performance metric was used to rig-
orously evaluate the algorithm’s progress towards the true
Pareto-front by greatly restricting the e-tolerance around
the reference set solutions. Epsilon-tolerance values used
by the e-performance metric for each of the four design
objectives (ecost, econc, euncert, and emass) were set similarly

to the e-dominance settings (1.0, 0.0001, 0.0001, and
0.000001, respectively) as these values were chosen for a
high level of objective precision. This means that if a solu-
tion was not found within these tolerance limits for each
reference set solution, then it was not considered a true
solution to the problem and was not included in the calcu-
lation of the metric. A target e-performance level of 80%
convergence to within the specified e tolerance of the refer-
ence set (i.e., 80% of the reference set has been quantified to
a very close precision) was then used as the sole basis for
the runtime of the algorithm.

Although the LTM problem described is inherently sui-
ted to a binary 0/1 representation within the MOEA frame-
work (i.e., individuals are represented as strings of ones
and zeros to indicate whether or not a well is sampled), a
real-coded representation was used in this study. This
choice was based on previous study results which indicated
superior performance of the algorithm when using a real-
coded representation for this particular problem (the
improved performance was attributed to the utilization of
real-coded evolutionary operators). Therefore, the binary
representation of the well sampling schemes was converted
to a real-coded representation using variables ranging from
0.0 to 1.0. If the algorithm generated a variable less than
0.5, it was changed to 0.0 and variables greater than or
equal to 0.5 were changed to 1.0.

6. Results

Enumeration of the 18–25 well test cases for the four
design objectives revealed a linear relationship between
problem size and the number of Pareto-optimal solutions
ranging from 525 solutions for the 18 well test case, to
2439 solutions for the 25 well test case. Fig. 4 shows the
number of Pareto-optimal solutions plotted versus problem
size (in terms of the number of sampling wells). Annota-
tions shown in the figure provide the exact number of Par-
eto-optimal solutions for each test case. In addition, the
0.98 R-squared value confirms the linear trend.

Example visualizations of the four-objective Pareto
fronts for both the 18 and the 25 well enumerated test cases

Fig. 3. Example calculation of the e-performance metric.

J.B. Kollat, P.M. Reed / Advances in Water Resources 30 (2007) 408–419 413
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are presented in Fig. 5. The sampling cost, concentration
estimation error, and local uncertainty objectives are plot-
ted on the x, y, and z coordinate axes and the fourth objec-
tive, mass estimation error, is represented by the marker
color. Fig. 5a and c show the actual Pareto-optimal sur-
faces (in this case a volume of points because there are four
design objectives) for the 18 and 25 well test cases, respec-
tively. Fig. 5b and d show planar projections of the Pareto-

optimal solution sets onto the planes formed by the x, y,
and z coordinate axes of the 18 and 25 well test cases
respectively. Viewing the results using the projections
shown in Fig. 5b and d provides a better representation
of the tradeoffs between the design objectives. The inter-
ested reader is invited to explore the electronic version of
this article which provides a full color illustration of Fig.
5. The enumeration of the 18–25 well test cases reveals a
great deal regarding the scaling properties of the LTM
problem. The main observation to be drawn from Fig. 5
is the strong geometric similarity between all of the Par-
eto-optimal solution sets (Fig. 5) illustrates this for both
the 18 and 25 well test cases). This indicates that for each
of the problem sizes used on our scaling analysis, we are
solving problems with very similar structures.

Table 1 provides an overview of the total number of
solutions in each of the problems’ decision spaces, the total
number of Pareto-optimal solutions, and the percentage of
their decision spaces that were infeasible. The percentage of
search space which is infeasible according to the objective
formulation presented in Section 2.2 decreases (from
65.1% to 45.6%) as the number of wells is increased. For
the 18 well test case, there are a total of 525 Pareto-optimal
designs out of the 262,144 potential sampling schemes and
for the 25 well test case, there are a total of 2439 Pareto-
optimal designs out of the 33,554,432 potential sampling
schemes.

Fig. 4. Number of Pareto-optimal solutions versus problem size for each
of the 18–25 well test cases.

Fig. 5. Four objective Pareto fronts for the 18 and 25 well test cases. Plots A and C show the actual Pareto surface and plots B and D show the planar
projections of the cost, concentration error, and uncertainty objectives onto the planes formed by the x, y, and z coordinate axes. Mass error is represented
by the color of the markers.
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Fig. 6 shows the average number of function evaluations
required by the e-NSGAII to attain an e-performance mea-
sure of 80% versus problem size. The upper curve (com-
posed of circular markers) indicates a quadratic growth
rate between the e-NSGAII’s computational requirements
and the LTM problem size. The points on the curve repre-
sent an average of the total function evaluations required
for 50 random seed trials and the error bars represent the
90th percentile range of random seed performance. In this
plot, we can see that the computational cost of solving the
LTM problem grows quadratically from approximately
34,000 function evaluations for the 18 well test case to over
590,000 function evaluations for the 25 well test case (on
average). In addition, the variability in the computational
demands posed by achieving the target performance level
increases substantially with increasing problem size. The
increasing variability in computational demands with lar-
ger problem sizes shows that random seed effects will have

a more severe impact on the reliability of MOEAs with
increasing problem sizes. For instance, the range of perfor-
mance of the 18 well case is approximately 16,900 function
evaluations while the range of performance of the 25 well
case is approximately 292,000 function evaluations. Both
ranges represent approximately 50% of the mean, but for
the 25 well test case, this level of reliability in terms of ran-
dom seed performance has huge implications with regard
to the computational requirements of the LTM problem
(especially when these runs required approximately 4 h
per random seed running on a Dell Pentium IV 3.0 GHz
processor running Microsoft� Windows XP).

Epsilon-dominance archiving can be used to limit the
quadratic growth of the LTM problem if users are willing
to accept an increasingly courser approximation to the Par-
eto front with increasing problem size. Since both the 18
and 19 well test cases contained approximately 500
Pareto-optimal solutions, e-dominance settings were
manipulated for the 20–25 well test cases to result in Par-
eto-optimal sets containing approximately 500 solutions
each. This results in a reduction of the Pareto-optimal set
to a size similar to the 18 and 19 well test cases while at
the same time, incorporating additional sampling wells.
Epsilon-dominance settings used to scale the 20–25 well test
cases are shown in Table 2. Readers should note that this
analysis clearly shows that the computational demands of
MOEAs are closely linked to the size of the Pareto-optimal
set being approximated. Since the total number of evalua-
tions used by an MOEA is a function of its population size
and run duration, these results also enforce the importance
of the adaptive population sizing used by the e-NSGAII.

Results achieved by the e-NSGAII through the e-domi-
nance approximation of the 20–25 well test cases are shown
in Fig. 6 (star markers). This figure demonstrates that the
e-NSGAII’s e-dominance archiving provides a mechanism
for approximating the Pareto-optimal set, limiting its size,
and potentially attaining a linear scaling of the computa-
tional cost with respect to problem size. Similarly to the
quadratic scaling results, the linearly scaled approximation
results are shown with the 90th percentile range of random
seed performance indicated by error bars.

Table 1
Enumeration data for the 18–25 well test cases

Wells Total possible
solutions

Pareto-optimal
solutions

% Infeasible

18 262,144 525 65.1
19 524,288 512 64.0
20 1,048,576 790 55.8
21 2,097,152 1193 54.1
22 4,194,304 1544 51.4
23 8,388,608 1846 48.2
24 16,777,216 2005 47.8
25 33,554,432 2439 45.6

Data shown includes the number of possible solutions, the number of
Pareto-optimal solutions, and the percentage of the search space which
was infeasible.

Fig. 6. Computational scaling results for the e-NSGAII applied to the 18–
25 well LTM test cases. Also shown are the results attained using the
e-dominance concept to approximate the Pareto set. The e-NSGAII’s
computational demands increase quadratically [O(l2) where l is problem
size] when solving successively larger LTM problems. However, using
e-dominance to constrain the Pareto-set size to approximately 500
solutions results in a linear scaling [O(l)] of computational demands with
increasing problem size.

Table 2
Epsilon settings used to approximate the Pareto-optimal sets of the 20–25
well test cases

Wells ecost econc euncert emass Sols.

18 1.0 0.0001 0.0001 0.000001 516
19 1.0 0.0001 0.0001 0.000001 498
20 1.0 0.4 0.7 0.1 503
21 1.0 0.9 1.4 0.5 503
22 1.0 1.0 1.5 0.5 499
23 1.0 1.1 1.7 0.8 505
24 1.0 1.0 1.5 0.8 500
25 1.0 1.1 1.7 0.8 499

The original e settings used in the first portion of the study for the 18 and
19 well test cases are shown as well.
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Fig. 7 illustrates the application of e-dominance to the

full Pareto-optimal set of the 25 well test case to yield suc-
cessive reductions in the set size. Fig. 7a shows the planar
projections of the full Pareto-optimal set for the 25 well test
case shown in Fig. 5d. The cost, concentration error, and
uncertainty objectives are represented by x, y, and z coor-
dinates and the mass error objective is represented by the
color of the markers. Proceeding from Fig. 7a to b, we
can see that applying e values of 1.0, 0.2, 0.2, and 0.01 to
the cost, concentration error, uncertainty, and mass error
objectives respectively reduces the Pareto-optimal set
(through approximation) to 1794 solutions. Proceeding to
Fig. 7c and d, we apply even more relaxed e settings to
the objectives until finally the set is reduced to 499 solu-
tions (as was used for the scaling analysis). Fig. 7 clearly
shows that although the Pareto-optimal set size is reduced,
the geometric properties of the set (including the extents of
the objectives) are well preserved. This also highlights that
using e-dominance archiving to approximate the Pareto-
optimal solution set will still yield an excellent representa-
tion of the design tradeoff geometries to support decision
making.

Fig. 8 illustrates the computational savings achieved by
using e-dominance to control the size of the Pareto-optimal
sets. Computational savings are expressed in terms of a
percentage reduction in the average function evaluations
required by the e-NSGAII (circle markers) and percentage
reduction in random trial variability (star markers).

Random trial variability was measured in this study using
the 90th percentile interquantile range of random trial per-
formance. In other words, the best 5% and worst 5% of the
random trials were eliminated from consideration when
computing the range (to eliminate outliers). For the 25 well
test case, the average computational cost decreases from
over 593,000 function evaluations to generate the full
Pareto-optimal set, to approximately 140,000 function

Fig. 7. Using e-dominance to control Pareto set size of the 25 well test case. Starting at the full Pareto-optimal set shown in plot A, we can see that by
successively relaxing the precision requirements of the problem through the manipulation of the e-dominance parameters for each objective (shown in
square brackets for plots B–D), the set size is reduced while maintaining geometric similarity to the full Pareto set.

Fig. 8. Percent computational savings (circle markers) and percent
reduction in variability (star markers) resulting from the use of e-
dominance to control Pareto set size.
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evaluations required to generate a 500 solution approxima-
tion to the full set. This represents a 76% decrease in the
computational requirements of the 25 well test case when
an approximation is accepted. Both Figs. 6 and 8 show that
the reliability of the algorithm is greatly improved for
increasing problem sizes (error bars in Fig. 6 and star
markers in Fig. 8) when e-dominance is used for approxi-
mation. For example, the random seed trial variability
(90th percentile) for the 25 well test case is reduced from
over 191,000 function evaluations when generating the full
Pareto-optimal set, to approximately 54,000 function eval-
uations when generating an approximation containing 500
solutions. This represents a 72% reduction (or improve-
ment) in the range of random seed performance. In general,
Fig. 8 shows that e-dominance approximation can provide
increasing computational savings and improved reliability
for increasing problem sizes.

Fig. 9 presents the e-NSGAII’s runtime results for the
e-performance metric versus total design evaluations for
each of the 18–25 well test cases. The dynamic results
shown in the figure represent the mean performance across
the 50 random trials used to solve each test case. The test
cases associated with each performance line are annotated
above the plot. Fig. 9a shows the scaling dynamics which
the e-NSGAII achieves when seeking the full Pareto-
optimal set for each test case. This plot clearly shows the
influence of problem size on search efficiency as the dynam-
ics of each test case clearly differ from one another. Smaller
test cases (namely the 18–21 well cases) approach the target
level of performance (e-performance = 80%) very quickly.
At approximately the 21 well test case and beyond, the
algorithm’s progress toward the target level of performance
becomes increasingly more computationally demanding
and reflects the quadratic growth in computational cost
associated with increasing problem size as observed previ-

ously in Fig. 6. Fig. 9b presents the runtime dynamics of
the e-NSGAII when e-dominance archiving is used to
approximate the Pareto-optimal solution set. This plot pre-
sents the dynamics of the LTM test cases which were scaled
according to the e settings presented in Table 2. In this fig-
ure, we can see that the search progress towards the target
e-performance level of 80% is dramatically faster than
when seeking the full Pareto-optimal set. In fact, if the
dynamics achieved when approximating the Pareto set
for all test cases in Fig. 9b were projected onto the dynam-
ics achieved when searching for the full Pareto set shown in
Fig. 9a, they would easily fit within the dynamics of the
18–22 well test cases.

7. Discussion

This study demonstrated the effects of increasing LTM
problem size on the computational requirements of the
e-NSGAII. The decision space of the LTM problem
increases according to 2l where l represents the number
of binary decisions (in this case, a yes/no decision of
whether of not to sample from a predetermined well loca-
tion). However, enumeration of the 18–25 well test cases
revealed a linear relationship between problem size and
the number of Pareto-optimal solutions. Test cases below
18 wells are easily tractable given current computational
ability but enumeration of the 25 well test cases required
6 days of continuous computing on a Pentium IV, 3 GHz
processor. Each time a well is added, the computational
requirements of complete enumeration are doubled, ulti-
mately motivating the need for efficient algorithms which
are capable of generating the Pareto-optimal solution set
(or an approximation thereof) without evaluating every
possible solution. This study showed that the e-NSGAII
was capable of generating a close approximation (to within

Fig. 9. Dynamic algorithm performance of the 18–25 well test cases. These plots show the e-performance of the 50 random seed trial runs for each test case
plotted versus function evaluations. The mean performance of each test case is indicated by a solid line and test case correspondence is labeled above each
plot. Plot A shows the dynamic performance of the e-NSGAII when searching for the full Pareto-optimal set and plot B shows the dynamic performance
of the algorithm when e-dominance is used to approximate the set.
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80% in terms of the e-performance metric) of the Pareto-
optimal solution set for the 25 well test case in approxi-
mately 4.3 h (on average) as opposed to the 6-days required
for enumeration. This represents a 97% reduction in com-
putational requirements. Computational requirements
were further reduced (76%) by accepting a 499 solution
approximation to the true 2439 solution Pareto-optimal
front through the utilization of e-dominance. The use of
e-dominance revealed that through approximation, the
computational complexity of using MOEAs to solve
LTM problems could be reduced from quadratic to
approximately linear scaling within the range of test cases
examined. This has significant implications for the future
of LTM design. For example, the largest test case examined
in this study consisted of 25 decision variables occurring at
a single point in time. If however, the site required quar-
terly sampling, the addition of a temporal component
quickly increases the decision space to 100 variables or
2100 potential sampling schemes. As it currently requires
approximately 500,000 function evaluations to solve the
25 well test case, the introduction of quarterly sampling
represents a 16-fold increase in the number of function
evaluations (i.e., 8-million) because of the e-NSGAII’s qua-
dratic scaling. In addition, if a space–time evaluation
scheme is used, the computational requirements of each
function evaluation will be greatly increased from that
required by Quantile Kriging as was used in this study.

The LTM test cases analyzed in this study represent a
lower bound in terms of the computational complexity of
using MOEAs in water resources applications. More com-
plex water resources applications with tens or hundreds of
integer or continuous decision variables may have a more
severe growth rate for their Pareto-optimal set sizes and
computational demands. In this study, e-dominance was
explored as a method of controlling the computational
scaling of the LTM problem as the number of monitoring
wells was increased. This method provides a means of
approximating the Pareto-optimal set based on user
defined precision goals and a willingness to accept the
approximation. However, as problem size increases, the
severity of the approximation increases as well. Although
optimization algorithms which are capable of attaining
the true Pareto-front are the ideal goal, this study demon-
strates that in reality, water resources scientists and
engineers will have to accept approximations to their appli-
cations’ Pareto-sets and advance the field by investigating
innovative new algorithms that scale subquadratically.

8. Conclusions

This study contributed a detailed assessment of how
increasing problem sizes (measured in terms of the number
of decision variables being considered) impacted the com-
putational complexity of using the e-NSGAII to solve an
LTM application. LTM test cases composed of 18–25 sam-
pling wells were first enumerated in terms of four design
objectives. The e-NSGAII was then used to approximate

the Pareto-optimal solution set of each test case to an e-
performance level of 80%. Results of the study indicated
linear scaling of Pareto set size versus problem size. The
e-NSGAII required quadratic scaling but the incorporation
of e-dominance to approximate the Pareto-optimal set
resulted in approximately linear computational scaling.
Although MOEAs are capable of solving challenging water
resources applications, the consideration of larger prob-
lems will require users to accept approximations to their
Pareto-optimal sets as well as research that will develop
improved algorithms that are capable of scaling
subquadratically.
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